Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38003578

RESUMO

Drought stress profoundly affects plant growth and development, posing a significant challenge that is extensively researched in the field. Thioredoxins (TRXs), small proteins central to redox processes, are crucial to managing both abiotic and biotic stresses. In this research, the VyTRXy gene, cloned from wild Yanshan grapes, was validated as a functional TRX through enzyme activity assays. VyTRXy was found to bolster photosynthesis, augment levels of osmotic regulators, stimulate antioxidant enzyme activities, and strengthen drought resilience in transgenic plants. These enhancements were evidenced by higher survival rates, optimized photosynthetic metrics, increased proline levels, augmented chlorophyll concentration, reduced electrolyte leakage, and decreased malondialdehyde and hydrogen peroxide (H2O2) levels. Furthermore, there was a surge in the activities of enzymes such as catalase, ascorbate peroxidase, glutathione peroxidase, dehydroascorbate reductase, and glutathione reductase, along with an increased expression of TRX peroxidase. Notably, under drought stress, there was a marked elevation in the expression of stress-responsive genes, including the adversity stress-inducible expression gene (NtRD29A) and DRE-binding protein (NtDREB), in transgenic tobacco. This investigation is pivotal in the quest for drought-resistant grapevine varieties and provides significant insights into the molecular functionality of VyTRXy in enhancing grapevine drought tolerance.


Assuntos
Antioxidantes , Resistência à Seca , Antioxidantes/metabolismo , Peróxido de Hidrogênio/metabolismo , Fotossíntese , Estresse Fisiológico/genética , Plantas Geneticamente Modificadas/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
Front Plant Sci ; 14: 1173857, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223813

RESUMO

Salt stress is an important factor which may negatively affect plant growth and development. High concentrations of Na+ ions can destroy the ion balance in plant somatic cells, as well as destroying cell membranes and forming a large number of reactive oxygen species (ROS) and other damage mechanisms. However, plants have evolved numerous defense mechanisms in response to the damages caused by salt stress conditions. Grape (Vitis vinifera L.), a type of economic crop, is widely planted throughout the world. It has been found that salt stress is an important factor affecting the quality and growth of grape crops. In this study, a high-throughput sequencing method was used to identify the differentially expressed miRNAs and mRNAs in grapes as responses to salt stress. A total of 7,856 differentially expressed genes under the salt stress conditions were successfully identified, of which 3,504 genes were observed to have up-regulated expressions and 4,352 genes had down-regulated expressions. In addition, this study also identified 3,027 miRNAs from the sequencing data using bowtie and mireap software. Among those, 174 were found to be highly conserved, and the remaining miRNAs were less conserved. In order to analyze the expression levels of those miRNAs under salt stress conditions, a TPM algorithm and DESeq software were utilized to screen the differentially expressed miRNAs among different treatments. Subsequently, a total of thirty-nine differentially expressed miRNAs were identified, of which fourteen were observed to be up-regulated miRNAs and twenty-five were down-regulated under the salt stress conditions. A regulatory network was built in order to examine the responses of grape plants to salt stress, with the goal of laying a solid foundation for revealing the molecular mechanism of grape in responses to salt stress.

3.
Int J Mol Sci ; 23(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36499201

RESUMO

Phenolic extracts from berry seeds have been extensively studied for their health benefits. However, few studies have been conducted on the effects of phenolic extracts from Vitis L. canes and berry stems. The Chinese spine grape (V. davidii Foex) is an important and widely distributed wild species of Vitis L. The present study explored the metabolomic profile and evaluated the antioxidant activity of phenolic compounds in extracts from V. davidii Foex. canes and stems, with a focus on their role in preventing DNA damage caused by free radicals and inhibiting the growth of breast (MCF-7) and cervical (HeLa) cancer cells. Total phenolic compounds in the dried berry stems of spine grapes were higher than that in vine canes. Analysis of the extracts showed that proanthocyanins, epicatechin, catechin, and phenolic acid were the main phenolic compounds in V. davidii Foex, but in higher quantities in berry stems than in vine canes. However, trans-resveratrol and kaempferol 3-O-glucoside were present in the vine canes but not in the berry stems. Antioxidant analysis by FRAP and ABTS showed that extracts from berry stems and vine canes had a higher antioxidant activity than thinned young fruit shoots before flowering, leaves, peel, pulp, and seeds in V. davidii Foex. Moreover, the antioxidant activity of extracts from berry stems was higher than that in other grape species, except for muscadine. In vitro analyses further showed that the extracts significantly increased H2O2 scavenging ability and conferred a protective effect against DNA damage. Furthermore, a low concentration of phenolic compounds in extracts from the vine canes and berry stems of spine grapes inhibited the proliferation of the MCF-7 and Hela cancer cells. These research results provided some important useful information for the exploitation of V. davidii Foex canes and berry stems and indicated that canes and stems of V. davidii Foex had good antioxidant properties, anticancer activity and prevented DNA damage, providing evidence for medical utilization of V. davidii Foex.


Assuntos
Catequina , Vitis , Vitis/genética , Antioxidantes/farmacologia , Antioxidantes/análise , Peróxido de Hidrogênio , Fenóis/farmacologia , Fenóis/análise , Frutas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/análise
4.
Plant Signal Behav ; 17(1): 2000791, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-35152834

RESUMO

Necrosis and ethylene-inducing peptide 1 (Nep1) -like proteins (NLP) are secreted by multiple taxonomically unrelated plant pathogens (bacteria, fungi, and oomycete) and are best known for inducing cell death and immune responses in dicotyledonous plants. A group of putative NLP genes from obligate biotrophic oomycete Plasmopara viticola were predicted by RNA-Seq in our previous study, but their activity has not been established. Therefore, we analyzed the P. viticola NLP (PvNLP) family and identified seven PvNLP genes. They all belong to type 1 NLP genes and form a P. viticola-specific cluster when compared with other pathogen NLP genes. The expression of PvNLPs was induced during early infection process and the expression patterns could be categorized into two groups. Agrobacterium tumefaciens-mediated transient expression assays revealed that only PvNLP7 was cytotoxic and could induce Phytophthora capsici resistance in Nicotiana benthamiana. Functional analysis showed that PvNLP4, PvNLP5, PvNLP7, and PvNLP10 significantly improved disease resistance of Arabidopsis thaliana to Hyaloperonospora arabidopsidis. Moreover, the four genes caused an inhibition of plant growth which is typically associated with enhanced immunity when over-expressed in Arabidopsis. Further research found that PvNLP7 could activate the expression of defense-related genes and its conserved NPP1 domain was critical for cell death- and immunity-inducing activity. This record of NLP genes from P. viticola showed a functional diversification, laying a foundation for further study on pathogenic mechanism of the devastating pathogen.


Assuntos
Arabidopsis , Oomicetos , Phytophthora , Arabidopsis/metabolismo , Resistência à Doença , Oomicetos/fisiologia , Phytophthora/fisiologia , Doenças das Plantas/microbiologia , Proteínas/química , Nicotiana/metabolismo
5.
Mitochondrial DNA B Resour ; 5(3): 2855-2856, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33457976

RESUMO

Vitis champinii is a grapevine rootstock species and widely used in vineyards and in rootstock breeding programs for regions with high nematode populations or saline soils. Here, the complete chloroplast genome of V. champinii was reported. The length of the chloroplast genome was 160,657 bp with a large single copy region of 89,217 bp, a small single copy region of 19,504 bp and two separated inverted regions of 51,936 bp, respectively. In total, 130 unique genes were identified of this genome, including 85 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. Phylogenetic analysis indicates that V. champinii is closely related to Vitis acerifolia.

6.
Mitochondrial DNA B Resour ; 5(3): 3050-3051, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-33458054

RESUMO

Vitis berlandieri, a species of grape native to the southern North America, is known for good tolerance against soils with a high content of lime and was almost used for rootstock breeding. Here, we report the complete chloroplast genome of V. berlandieri. The chloroplast genome was 161,028 bp in length, harboring a large single-copy region (89,228 bp) and a small single-copy region (19,028 bp) separated by two inverted repeat regions. A total of 130 unique genes were identified from this genome, including 85 protein-coding genes (PCGs), 37 tRNA genes, and 8 rRNA genes. Chloroplast phylogenetic analysis revealed that V. berlandieri is closely related to V. cordifolia.

7.
J Exp Bot ; 64(11): 3299-312, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23918966

RESUMO

Rht-B1c, allelic to the DELLA protein-encoding gene Rht-B1a, is a natural mutation documented in common wheat (Triticum aestivum). It confers variation to a number of traits related to cell and plant morphology, seed dormancy, and photosynthesis. The present study was conducted to examine the sequence variations of Rht-B1c and their functional impacts. The results showed that Rht-B1c was partially dominant or co-dominant for plant height, and exhibited an increased dwarfing effect. At the sequence level, Rht-B1c differed from Rht-B1a by one 2kb Veju retrotransposon insertion, three coding region single nucleotide polymorphisms (SNPs), one 197bp insertion, and four SNPs in the 1kb upstream sequence. Haplotype investigations, association analyses, transient expression assays, and expression profiling showed that the Veju insertion was primarily responsible for the extreme dwarfing effect. It was found that the Veju insertion changed processing of the Rht-B1c transcripts and resulted in DELLA motif primary structure disruption. Expression assays showed that Rht-B1c caused reduction of total Rht-1 transcript levels, and up-regulation of GATA-like transcription factors and genes positively regulated by these factors, suggesting that one way in which Rht-1 proteins affect plant growth and development is through GATA-like transcription factor regulation.


Assuntos
Fatores de Transcrição GATA/metabolismo , Proteínas de Plantas/metabolismo , Triticum/metabolismo , Fatores de Transcrição GATA/genética , Haplótipos , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único/genética , Triticum/genética
8.
Sheng Wu Gong Cheng Xue Bao ; 28(2): 144-53, 2012 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-22667117

RESUMO

Plant height is one of the most important agronomic traits that could affect both crop yield and quality. Among all the hormones, gibberellins are crucial to regulate plant height. Cloning and molecular mechanism research of the plant height genes associated gibberellins have extremely important value for the regulation of crop growth and agricultural production, and have been widely used in rice, wheat and other grain crops breeding. In order to promote utilization of gibberellins in fruit trees, flowers and other horticultural crops breeding, we reviewed the regulation of plant height by gibberellins biosynthesis and signal transduction at the molecular level in this paper.


Assuntos
Produtos Agrícolas/genética , Giberelinas/biossíntese , Giberelinas/farmacologia , Caules de Planta/crescimento & desenvolvimento , Transdução de Sinais , Árvores/genética , Produtos Agrícolas/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Reguladores de Crescimento de Plantas/biossíntese , Reguladores de Crescimento de Plantas/farmacologia , Árvores/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...